
Dual-Level Parallelism and Multiblock Grids in

Coastal Ocean Circulation Modeling

Phu Luong Clay P. Breshears Le N. Ly
Center for Subsurface Modeling HiPerSoft Department of Oceanography
University of Texas, Austin Rice University Naval Postgraduate School

Abstract

Numerical grid generation techniques play an important role in the numerical solu-
tion of partial di�erential equations on arbitrarily shaped regions. For coastal ocean
modeling, in particular, a one-block grid covering the region of interest is most com-
monly used. Most bodies of water have complicated coastlines; e.g., the Persian Gulf
and Mediterranean Sea. In such a physical domain, the number of unused grid points
can be a relatively large portion of the entire domain space. Other disadvantages of
using a one-block grid include large memory requirements and poor resolution for a
large body of water; e.g., the Paci�c Ocean.

In this study, a multiblock grid generation technique and a dual-level parallel im-
plementation to eliminate these problems are introduced. Message Passing Interface
(MPI) is used to parallelize the Princeton Ocean Model (POM) ocean circulation code
such that each grid block is assigned to a unique processor. Since not all grid blocks
are of the same size, the work load varies between MPI processes. To alleviate this,
dynamic threading is used to improve load balance. Performance results from the
POM model on both a one-block grid and a twenty-block grid after a 90-day simula-
tion for the Persian Gulf demonstrate the e�cacy of the MPI-only and MPI/OpenMP
code versions.

Introduction

Over the years, the traditional one-block rectangular grid has been used for ocean
circulation modeling. This technology encounters di�culty on computational grids
with high resolution owing to the large memory and processing requirements. For a
large body of water, such as an ocean, with complicated coastlines, the number of grid
points used in the calculation (water points) is often the same or even smaller than the
number of unused grid points (land points). It is known that domain decomposition
can be used to partition the traditional one-block grid into sub-domains that reduce



the unused grid points and improve performance of the ocean model [7]. MPI [10] can
be used to parallelize this type of computation. An MPI implementation with domain
decomposition often requires a preprocessing step to determine the most e�cient work
distribution for the subdomains in order to avoid severe load imbalances [7]. Load
imbalance adversely a�ects parallel performance and scalability.

A multiblock grid generation technique and parallel implementation of the POM
ocean circulation code [1] is proposed. The multiblock grid generation technique
allows the elimination of blocks composed mainly of land grid points. It also allows
the choice of the grid with minimum land points along the coastline. In addition, a
high horizontal resolution of an area of interest can be handled easily. The advantages
of multiblock grid generation techniques over the traditional rectangular one-block
grid can be found in [5].

The use of MPI and OpenMP [8] to exploit two levels of parallelism in the multiblock
computation is described. Since not all grid blocks are of the same size, the OpenMP
dynamic threading feature is used to improve the performance and load balance in
the POM code [2]. The modeling of the Persian Gulf was chosen as a prototypical
problem to demonstrate the e�ectiveness of the multiblock grid technique utilizing
the dual-level parallel execution model.

The method for creating a multiblock grid from a single-block grid is �rst described
in \Multiblock Grid Generation." In \Model Descriptions and Simulations," a review
of the POM code and the physics modeled, as well as the numerical simulation, is
presented. Details of the parallel implementations (MPI-only and MPI/OpenMP)
are given in \Parallelization of Multiblock POM." Performance results of the parallel
codes are included in this section as well. The conclusions from this study are then
presented.

Multiblock Grid Generation

A one-block rectangular grid (291x211) and a twenty-block grid are both used for
this study. The one-block grid was generated by a simple algebraic scheme using
the EAGLEView software package [11]. EAGLEView is an interactive surface and
volumetric grid generation program developed by the Engineering Research Center
at Mississippi State University. The twenty-block grid is a decomposition of the one-
block rectangular grid with the same resolution. The decomposition is done through
the use of several modules in EAGLEView. The Input/Output (I/O) module allows
the user to load in the coastline data and the one-block grid data. The extract
module is then able to extract the land-grid portion from the domain. Through the
EAGLEView GUI, this same module is used for decomposing the water-grid portion
into small blocks. After having the water portion of the domain decomposed into



blocks, the I/O module is used again for writing coordinate values of each grid block
into separate �les.

Persian Gulf

The physical geographic area chosen for this study is the Persian Gulf. This area
extends from 48 East to 58 East in longitude and from 23.5 North to 30.5 North
in latitude. Part of the Gulf of Oman is also included in this physical domain.
Figure 1 shows the coastlines and geographic information for the study region. The
complicated features of the coastlines near Qatar, along the Strait of Hormuz, and
the northern part of the Persian Gulf present an opportunity to demonstrate the
advantages of multiblock grids within the POM code.

With dimension 291x211 (61,401 total grid points), the approximate horizontal res-
olution for the one-block grid is 3.5 km. The number of relevant grid points in the
one-block grid is 22,309, while the number of unused grid points is 39,092. However,
the twenty-block grid contains a total of 32,031 grid points with only 9,722 of those as
unused. Approximately 70% of the total grid points are actually used in the twenty-
block grid calculation compared to only 36% in the one-block rectangular grid. Also,
since the twenty-block grid contains almost half the total number of points as the
one-block grid, a savings of up to 50% of the required memory needed to hold the
grid model should be expected. A reduction in serial execution time would also be
expected.

Model Descriptions and Simulations

The coastal ocean is a region receiving a great deal of attention owing to an in-
creased utilization for human habitation, aquatic development, and military opera-
tions. These activities require a knowledge of dynamic and thermodynamic structures
of the coastal regions such as water circulation, ocean wave dynamics, storm surges,
and evolution of seawater temperature and salinity. A review of the POM three-
dimensional, primitive equation, time-dependent, � coordinate, free surface coastal
ocean circulation model is presented in this section.

Governing Equations

The model primitive equations describe the velocity, surface elevation, salinity, and
temperature �elds in the ocean. The ocean is assumed to be hydrostatic and incom-
pressible (Boussinesq approximation).



The equations are written in a Cartesian coordinate system with x eastward, y north-
ward, and z upward. The free surface is located at z = �(x; y; t), and the bottom is
at z = �H(x; y).

The governing equations used in the POM model are:

@~V

@t
+ ~V � r~V +W

@~V

@z
+ 2~
� ~V = �

1

�0
rP +

@

@z

0
@Km

@~V

@z

1
A+ ~F (1)

@P

@z
= ��g (2)

r � ~V +
@W

@z
= 0 (3)

d�i
@t

+ ~V � r�i +W
@�i
@z

=
@

@z

 
Kh

@�i
@z

!
+ F�i : (4)

The density is computed by using the equation of state in the general form:

� = �(�; S; p): (5)

The balance of momentum is described by Equation (1); Equation (2) is the hy-
drostatic equation; Equation (3) is the continuity equation; and the conservation
equations for temperature and salinity are described in Equation (4). The Coriolis

force is denoted as 2~
� ~V , where ~
 is the earth rotation vector, ~V is the horizontal
velocity vector with components (U; V ), r is the horizontal gradient operator, �o is
the reference density, � is the seawater density, g is the gravitational acceleration, P
is the pressure, and Km and Kh are the vertical turbulent exchange coe�cients for
momentum of heat and salt, respectively. In Equation (4), �i may represent mean

potential temperature, �, or salinity, S. The horizontal di�usion terms ~F (Fx; Fy) in
Equation (1) and F�i in Equation (4) can be calculated using Smagorinsky horizontal
di�usion formulation [9].

The di�usion terms in Equations (1) and (4) contain the vertical turbulent exchange
coe�cients that are determined by the second-order turbulence closure scheme of
Mellor and Yamada [6]. The turbulence scheme is characterized by equations for
turbulent kinetic energy (TKE), q2=2, and for the turbulent mixing length, `. The
equations can be written in the same form for function Qi, so that Qi is either q

2=2
for TKE or q2` for the turbulent mixing length [4]. Details of the turbulence closure
used in the POM ocean circualtion model can be found in [6] as well.



Persian Gulf Simulation

The Persian Gulf is a shallow embayment of the Gulf of Oman, and the average depth
of the basin is only about 35 meters. The greatest depths in the Persian Gulf are
approximately 150 meters and are located in the central basin and at the Strait of
Hormuz. The bathymetry data for both the one-block grid and twenty-block grid are
obtained from the NAVOCEANO's two minutes resolution bathymetry database by
interpolation. The portion of the Gulf of Oman used in this data set, where the open
boundary condition is imposed, ranges to a depth of about 2000 meters.

The POM model has realistic coastlines and bottom topography with 26 levels of
bottom-following vertical � coordinate. The model is initialized with the NAVO-
CEANO's annual ten minutes resolution temperature and salinity Generalized Digital
Environmental Model (GDEM) database. At the open boundary, the internal normal
velocities are governed by a Sommerfeld radiation condition. The open boundary
condition for the surface elevation is zero gradient normal to the boundary. Tem-
perature, salinity, and tangential velocities are upwinded at the open boundary. The
model is spun up for 30 days (diagnostic mode) in which the density distribution at
all points on the computational grids are held �xed in time.

Multiblock Grid Serial Performance

Throughout the multiblock grid serial computation, each grid block is considered
to have four interfaces (west, south, east, north) for exchange of overlapping grid
points with other blocks. Information is updated after every time-step in sequential
order from block Number 1 to block Number 20. The time-step is 40 seconds for the
external mode and 240 seconds for the internal mode. After 30 days of diagnostic
mode the model is then run for 60 days. Numerical solutions after a 90-day simulation
of the serial code version on the one-block grid and twenty-block grid yield identical
results [3].

The simulations were computed on the SGI Origin 2000 at U.S. Army Engineer Re-
search and Development Center (ERDC) Major Shared Resource Center (MSRC) in
Vicksburg, MS. Serial execution time for a 10-day simulation on the one-block grid
was over 21 hours as compared to just over 16 hours for the twenty-block grid. These
results show the twenty-block grid serial performance was not overly encouraging;
however, 50% of the memory requirement of the one-block grid code was saved.



Parallelization of Multiblock POM

POM is a standard Fortran code that was initially designed for serial computers and
later ported to vector machines. In the POMmultiblock grid version, each rectangular
block grid is considered to have four neighboring interfaces (west, south, east, and
north) with adjacent blocks. Special considerations for computing with interfaces
bordering open ocean, or those without adjacent blocks, are built into the model.
While there can be only one shared interface between two adjacent blocks, a block
may have any number of adjacent blocks along a given block face. For simplicitiy, the
code used in this study restricted the number of di�erent blocks adjacent to any one
face at no more than two. (No problems are anticipated with allowing an unknown
number of adjacent blocks per face and are planning to modify the code to handle
such data sets in a future version.)

MPI

The serial version of the code includes four routines speci�cally designed to transfer
data between grid blocks. Processing blocks from the �rst to the last in order, data
are copied from those blocks that are adjacent to the current block and stored within
the appropriate ghost cells. After all blocks have been processed, the result is an
exchange of data between adjacent blocks; i.e., the amount of data copied from one
block into another is the same size as the data copied in the other direction.

With message passing, these updates can be done in parallel. Because of the symbiotic
nature of the data exchanges, the amount of data that each block must receive from
each adjacent block must also be sent to those adjacent blocks. In the serial code,
the order of updates was governed by processing all adjacent blocks on one interface
before proceeding to the next interface (chosen by moving around the compass points
of the interfaces).

Data are sent to all adjacent blocks within the same interface, and the interfaces
are processed in order as in the serial version. However, asynchronous receives are
posted by each block after each set of data is sent. After all data have been sent, each
block processes the actual receipt of data. The exchange of data is completed after
the data have arrived in the block's processor and been moved into the appropriate
overlapping grid points. Advantages of the use of asynchronous receives can be found
in [3].

Since all blocks synchronize to some extent at the communication routines, those
blocks with less computation to be done will tend to spend more time waiting for
completion of data exchanges than blocks with more grid points. Normally this



would be a cause for concern in many parallel applications and would likely point out
that the load balance among MPI tasks needed to be balanced more closely. However,
balancing the workload more evenly in the multiblock version of POM would require
a complete restructuring of the grid blocks in the data set. Another means of creating
a more balanced execution time between updates would be to further parallelize the
computations in those blocks that have been assigned larger numbers of grid points.
Methods to achieve this are explored in the next section.

OpenMP

OpenMP is a collection of compiler directives, library routines, and environment
variables that can be used to specify shared-memory parallelism. OpenMP allows the
POM code to be parallelized at a �ne granularity (Fortran DO loop level).

Pro�ling the serial code revealed several routines that accounted for more than half
of the total execution time. The VAMPIR (Pallas) performance analysis tool was
used to identify individual loops that resulted in the majority of the execution time
within these selected routines. A number of these loops were chosen, and each was
analyzed for data dependencies before OpenMP directives were inserted. Results from
these initial experiments were not overly encouraging. A slight decrease in the overall
execution time was demonstrated with four OpenMP threads per process.

Many di�erent loops within the code were prime candidates for OpenMP directives.
However, the task of manually inserting directives throughout the code was daunting.
Fortunately, the MIPSpro version 7.30 Fortran 90 compiler on the SGI Origin 2000
is equipped with an Auto-Parallelizing Option ag (-apo) to automatically analyze
loop dependencies and insert OpenMP directives where it is safe to do so. Because
of previous experience with the dynamic threading feature of OpenMP [2] and the
similar load imbalance characteristics inherent in the multiblock grid structure, two
methods of using OpenMP with a dynamic number of threads were examined.

The �rst method involved manual control of the number of threads spawned by
each process in conjunction with compiling selected routines with the -apo ag.
A threshold of the minimum amount of work needed to spawn a thread is set,
and each process computes the number of threads (up to some set maximum num-
ber) that should be used based on the assigned workload. The OpenMP routine
OMP SET NUM THREADS is called after the number of threads for the process
has been found. When a process determines that a single thread is to be used, the
original serial routine is called, otherwise the version with added directives is called.
It is assumed that the overhead needed to create a single OpenMP thread, often mul-
tiple times within a single routine, is avoided. This method is referred to as manual



MPI/OpenMP.

The second method was to use the Auto-Parallelizing Option ag when compiling all
routines in the POM code. Before execution the environment variable OMP SET DYNAMIC
is set to .TRUE.; this allows the SGI Origin 2000 runtime system to choose the num-
ber of threads spawned by a process at each OpenMP. One potential drawback to
this method is the overhead of spawning a single thread to process a small data set.
This method is referred to as automatic MPI/OpenMP

Obviously, the �rst version of dynamic threading requires much more work and plan-
ning than the latter method. However, the �rst method gives a better improvement
in the execution load balance within POM routines. Results from three di�erent
executions (MPI-Only, manual MPI/OpenMP, and automatic MPI/OpenMP) are
discussed in the next section.

Parallel Performance

Synchronous communication occurs periodically between the MPI processes during
the computation. Therefore, MPI processes with less work (i.e., smaller domains)
must wait for slower processes to complete before proceeding with the computation.
In order to quantify the degree of load imbalance within a given code segment, idle
overhead is de�ned as the ratio of execution time to maximum execution time ex-
pressed as a percentage:

%idle = 100%�

PN�1
i=0 ti

N � tmax

(6)

where N is the number of MPI processes, ti is execution time of process i, and tmax

is the largest time ti.

Pro�ling the serial POM code with the SpeedShop pro�ling tool on the SGI Origin
2000 revealed several routines that consumed over half of the execution time. The
top one among those routines is PROFQ, which takes nearly 20% of the total execution
time in each processor.

All results presented herein are for the twenty-block grid data set. Figure 2 shows the
timing results of the PROFQ routine of the MPI-only code for a run of 10 simulated
days running on 20 SGI Origin 2000 processors. A measure of 38% idle time was
committed within this routine. The total wall-clock execution time of this POM code
run was 108 minutes.



With the manual MPI/OpenMP version of the code run on 20 processors with a
maximum of four OpenMP threads per process, a measure of 21.1% idle time was
committed. Figure 3 shows the PROFQ routine timing results for this version of the
code. Under automatic MPI/OpenMP code, a measure of 29% idle time was achieved
within the PROFQ routine (Figure 4). While the manual MPI/OpenMP code had the
best load balance of the three code versions, it performed worse in the overall wall-
clock execution time (46 minutes) than did the automatic MPI/OpenMP code (32
minutes).

Conclusions

The parallel multiblock grid techniques applied to the POM ocean circulation model
was demonstrated to eliminate those problems inherent in one-block structured grid
codes. The timing results show a signi�cant improvement in the execution time as well
as in the load imbalance produced by MPI-only execution. Numerical solutions after
a 90-day simulation of the model on the one-block and twenty-block yield identical
results.

It was shown that with use of the dynamic threading feature within OpenMP, load
balance between the MPI processes can be improved. By using the dual-level algo-
rithm and the grid generation technique presented in this study, a 10-day simulation
of the Persian Gulf was able to be run in less than one-half hour as compared to 21
hours for the traditional serial one-block grid version of the code. A twenty times
speed up was achieved for the MPI-only version on 20 SGI Origin 2000 processors
and a 45 times speed up for the automatic MPI/OpenMP version.

The serial performance of the multiblock grid was not overly encouraging; however,
almost 50% of the memory requirement of the one-block grid code was saved. With
such a signi�cant improvement in performance and memory reduction, these tech-
niques can be applied to ocean circulation simulations on a larger ocean data set with
a higher horizontal resolution.

Acknowledgments

The work was funded by the DoD High Performance Computing Modernization Pro-
gram U.S. Army Engineer Research and Development Center (ERDC) Major Shared
Resource Center through Programming Environment and Training (PET). It was sup-
ported by Contract Number: DAHC 94-96-C0002 Computer Sciences Corporation.
Views, opinions, and/or �ndings contained in this report are those of the author(s)



and should not be construed as an o�cial Department of Defense position, policy, or
decision unless so designated by other o�cial documentation.

The authors would like to acknowledge Dr. Henry Gabb, Director of Scienti�c Com-
puting at the ERDC MSRC, Dr. Wayne Mastin, PET Academic Lead at ERDC
MSRC, and Dr. Mary Wheeler, Director of Center for Subsurface Modeling at UT
Austin, TX, for supporting this project. The support of the O�ce of Naval Research
under the NOMP program (Dr. M. Fiadeiro) is also acknowledged.

References

[1] Blumberg, A. F. and Mellor, G. L., \A Description of a Three-Dimensional Coastal
Ocean Circulation Model." In Three-Dimensional Coastal Models, Coastal and
Estuaries Sciences. Heaps, N. S. editor, AGU Geophysical Monograph Board, 1,
1987.

[2] Luong, P. V., Breshears, C. P., and Gabb, H. A., \Execution and Load-Balance
Improvements in the CH3D Hydrodynamic Simulation Code," ERDC MSRC PET
Technical Report No. 00-07, February 2000.

[3] Luong, P. V., Breshears, C. P., and Ly, L. N., \Dual-Level Parallelism Improves
Load-Balance in Coastal Ocean Circulation Modeling," ERDC MSRC PET Tech-
nical Report, 00-08.

[4] Ly, L. N., \The Gulf of Mexico responses to Hurricane Frederic simulated with
the Princeton numerical ocean circulation model." Technical report, INO, Stennis
Space Center, MS, 42 p., 1992.

[5] Ly, N. L., and Luong, P. V., \Numerical Multiblock Grids in Coastal Ocean
Circulation Modeling," Journal of Applied Mathematical Modeling, 23, pp. 865{
879, November 1999.

[6] Mellor, G. L. and Yamada, T., \A Hierarchy of Turbulence Closure Models for
Planetary Boundary Layers." J. Atmos. Sci.,, 31, 1791-1896, 1982.

[7] Oberpriller, W. D., Sawdey, A. C., O'Keefe, M. T., and Gao, S., \Parallelizing
the Princeton Ocean Model Using TOPAZ," http://topaz.lcse.umn.edu.

[8] OpenMP Architecture Review Board, \OpenMP Fortran Application Program
Interface, Version 1.0," http://www.openmp.org, October 1997.

[9] Smagorinsky, J., \General Circulation Experiments with the Primitive Equations.
I. The basic Experiment," Mon. Weather Rev., 91,99-164, 1963.



[10] Snir, M., Otto, S., Huss-Lederman, S., Walker, D., and Dongarra, J., MPI|The

Complete Reference: Volume 1, the MPI Core, MIT Press, Cambridge, 1998.

[11] Stokes, M., Jiang, M., and Remotique, M., \EAGLEview Grid Geration Pack-
age," EAGLEView Version 2.4 Manual. Missisippi State University/National Sci-
ence Foundation Engineering Research Center for Computational Field Simula-
tion, December 1992.



Figure Captions

Figure 1 The Persian Gulf Coastline

Figure 2 PROFQ (MPI-only) Cumulative Execution Time in seconds

Figure 3 PROFQ (manual MPI/OpenMP) Cumulative Execution Time in seconds

Figure 4 PROFQ (automatic MPI/OpenMP) Cumulative Execution Time in seconds



Figure 1 The Persian Gulf Coastline



Figure 2 PROFQ (MPI-only) Cumulative Execution Time in seconds



Figure 3 PROFQ (manual MPI/OpenMP) Cumulative Execution Time in seconds



Figure 4 PROFQ (automatic MPI/OpenMP) Cumulative Execution Time in seconds


